
Week 11 - Wednesday



 What did we talk about last time?
 Exam 2
 Before that:
 Review

 Before that:
 Regular expressions







To understand recursion, you must first understand recursion.



 Defining something in terms of itself
 To be useful, the definition must be 

based on progressively simpler 
definitions of the thing being defined



 It's possible to define something recursively from the bottom 
up

 We start with a simple pattern and repeat the pattern, using a 
copy of the pattern for each part of the starting pattern



Explicitly:
 n! = (n)(n – 1)(n – 2) … (2)(1)
Recursively:
 n! = (n)(n – 1)!
 1! = 1

 6! = 6 ∙ 5!
 5! = 5 ∙ 4!

▪ 4! = 4 ∙ 3!
▪ 3! = 3 ∙ 2!
 2! = 2 ∙ 1!
 1! = 1

 6! = 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 720



Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case





 Top down approach
 Don't try to solve the whole problem
 Deal with the next step in the problem
 Then make the "leap of faith"
 Assume that you can solve any smaller part of the problem



ProblemProblemProblemProblem

 Problem:  You want to walk to the door
 Base case (if you reach the door):
 You're done!

 Recursive case (if you aren’t there yet):
 Take a step toward the door

Problem



 Base case (n ≤ 1):
 1! = 0! = 1

 Recursive case (n > 1):
 n! = n(n – 1)! 



def factorial(n):
if n <= 1:

return 1
else:

return n*factorial(n – 1)

Base Case

Recursive
Case



 Any program that uses loops can be done with recursion
 Any program that uses recursion can be done with loops
 Sometimes it's easier to use loops
 Sometimes it's easier to use recursion
 A base case is necessary in recursion to tell the process when to 

stop
 This is like a condition for while loop or the amount of iteration for a for 

loop
 A recursive case is necessary so that recursion can continue
 This is similar to how a loop jumps back up to the top when it gets to the 

bottom



 Base case (Empty list):
 0

 Recursive case (At least one thing left in the list):
 The value of the first thing plus the sum of the rest of the list



def recursiveSum(list):
if len(list) == 0:

return 0
else:

return list[0] + recursiveSum(list[1:])

Base Case

Recursive
Case



 Base case (List with one thing in it):
 The first (and only) thing in the list

 Recursive case (More than one thing left in the list):
 The maximum of the first thing in the list and whatever is the biggest 

thing in the rest of the list 



def recursiveMax(list):
if len(list) == 1:

return list[0]
else:

return max(list[0], recursiveMax(list[1:]))

Base Case

Recursive
Case



 Use it only in special circumstances, since it's usually slower than 
loops

 Recursive solutions are often impressive for how short the code is
 Some people love it, but it can be hard to think about
 Instead of trying to solve the entire problem, we think about 

unwrapping one layer of the problem
 Don't think too much about what's going on in the other recursive calls 

since you can't access those variables
 You usually don't want to change the values of variables with =

since that can make the recursion harder to think about





 Many natural things have recursive shapes:
 Trees
 Spiral shells
 Blood vessels
 Mountains
 Snowflakes

 Using recursion, we can draw some complex, organic-looking 
shapes with only a little code



 Let's start with a simple (non-recursive) function that draws a 
square with a turtle called yertle and a side length called side

 It works by going clockwise around the square
 It (importantly) returns yertle to the starting point

def drawSquare(yertle, side):
for i in range(4):

yertle.forward(side)
yertle.right(90)



 We can use the drawSquare() function repeatedly to draw 
a series of nested squares with progressively smaller sides

 Base case (Side length < 1):
 Do nothing (Seems odd but is not an unusual base case)

 Base case (Side length ≥ 1):
 Draw a square with the given side length
 Continue drawing nested squares with a side length that's 5 units 

smaller



 Here is that function implemented in Python:

 This function is called like any normal function:

def nestedSquares(yertle, side):
if side >= 1: # hidden base case

drawSquare(yertle, side)
nestedSquares(yertle, side - 5)

nestedSquares(someTurtle, 200)



 Squares are fine, but they're not very exciting (or very organic 
looking)

 We can extend the idea into drawing a tree shape
 A tree looks kind of like a capital Y
 But then, instead of straight lines, we can replace the two 

branches of the Y with smaller Y's
 And so on …
▪ And so on …



 Base case (Trunk length < 5):
 Do nothing

 Recursive case (Trunk length ≥ 5):
 Move forward trunk length
 Turn right 30°
 Draw a tree (recursively) with a trunk length 15 units shorter
 Turn left 60° (which turns back to the original heading plus another 30°)
 Draw a tree (recursively) with a trunk length 15 units shorter
 Turn right 30° (which turns back to the original heading)
 Move backward the trunk length (returning to the starting point)



 Here is that function implemented in Python:

def tree(yertle, trunkLength):
if trunkLength >= 5: # hidden base case

yertle.forward(trunkLength)
yertle.right(30)
tree(yertle, trunkLength - 15)
yertle.left(60)
tree(yertle, trunkLength - 15)
yertle.right(30)
yertle.backward(trunkLength)





 Finish recursion
 Work time for Assignment 8
 Assignment 8 is hard!



 Work on Assignment 8


	COMP 1800
	Last time
	Questions?
	Assignment 8
	Recursion
	What is Recursion?
	Bottom Up
	Top Down
	Useful Recursion
	Solving Problems with Recursion
	Approach for Problems
	Walking to the Door
	Implementing Factorial
	Code for Factorial
	Recursion and loops are the same
	Adding up the numbers in a list
	Code for Sum
	Finding the biggest number in a list
	Code for biggest number in list
	Tips for recursion
	Drawing Recursively
	Complex shapes
	Drawing squares
	Nested squares
	Nested squares function
	Trees
	Recursion for tree drawing
	Tree function
	Upcoming
	Next time…
	Reminders

