
Week 11 - Wednesday

 What did we talk about last time?
 Exam 2
 Before that:
 Review

 Before that:
 Regular expressions

To understand recursion, you must first understand recursion.

 Defining something in terms of itself
 To be useful, the definition must be

based on progressively simpler
definitions of the thing being defined

 It's possible to define something recursively from the bottom
up

 We start with a simple pattern and repeat the pattern, using a
copy of the pattern for each part of the starting pattern

Explicitly:
 n! = (n)(n – 1)(n – 2) … (2)(1)
Recursively:
 n! = (n)(n – 1)!
 1! = 1

 6! = 6 ∙ 5!
 5! = 5 ∙ 4!

▪ 4! = 4 ∙ 3!
▪ 3! = 3 ∙ 2!
 2! = 2 ∙ 1!
 1! = 1

 6! = 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 720

Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case

 Top down approach
 Don't try to solve the whole problem
 Deal with the next step in the problem
 Then make the "leap of faith"
 Assume that you can solve any smaller part of the problem

ProblemProblemProblemProblem

 Problem: You want to walk to the door
 Base case (if you reach the door):
 You're done!

 Recursive case (if you aren’t there yet):
 Take a step toward the door

Problem

 Base case (n ≤ 1):
 1! = 0! = 1

 Recursive case (n > 1):
 n! = n(n – 1)!

def factorial(n):
if n <= 1:

return 1
else:

return n*factorial(n – 1)

Base Case

Recursive
Case

 Any program that uses loops can be done with recursion
 Any program that uses recursion can be done with loops
 Sometimes it's easier to use loops
 Sometimes it's easier to use recursion
 A base case is necessary in recursion to tell the process when to

stop
 This is like a condition for while loop or the amount of iteration for a for

loop
 A recursive case is necessary so that recursion can continue
 This is similar to how a loop jumps back up to the top when it gets to the

bottom

 Base case (Empty list):
 0

 Recursive case (At least one thing left in the list):
 The value of the first thing plus the sum of the rest of the list

def recursiveSum(list):
if len(list) == 0:

return 0
else:

return list[0] + recursiveSum(list[1:])

Base Case

Recursive
Case

 Base case (List with one thing in it):
 The first (and only) thing in the list

 Recursive case (More than one thing left in the list):
 The maximum of the first thing in the list and whatever is the biggest

thing in the rest of the list

def recursiveMax(list):
if len(list) == 1:

return list[0]
else:

return max(list[0], recursiveMax(list[1:]))

Base Case

Recursive
Case

 Use it only in special circumstances, since it's usually slower than
loops

 Recursive solutions are often impressive for how short the code is
 Some people love it, but it can be hard to think about
 Instead of trying to solve the entire problem, we think about

unwrapping one layer of the problem
 Don't think too much about what's going on in the other recursive calls

since you can't access those variables
 You usually don't want to change the values of variables with =

since that can make the recursion harder to think about

 Many natural things have recursive shapes:
 Trees
 Spiral shells
 Blood vessels
 Mountains
 Snowflakes

 Using recursion, we can draw some complex, organic-looking
shapes with only a little code

 Let's start with a simple (non-recursive) function that draws a
square with a turtle called yertle and a side length called side

 It works by going clockwise around the square
 It (importantly) returns yertle to the starting point

def drawSquare(yertle, side):
for i in range(4):

yertle.forward(side)
yertle.right(90)

 We can use the drawSquare() function repeatedly to draw
a series of nested squares with progressively smaller sides

 Base case (Side length < 1):
 Do nothing (Seems odd but is not an unusual base case)

 Base case (Side length ≥ 1):
 Draw a square with the given side length
 Continue drawing nested squares with a side length that's 5 units

smaller

 Here is that function implemented in Python:

 This function is called like any normal function:

def nestedSquares(yertle, side):
if side >= 1: # hidden base case

drawSquare(yertle, side)
nestedSquares(yertle, side - 5)

nestedSquares(someTurtle, 200)

 Squares are fine, but they're not very exciting (or very organic
looking)

 We can extend the idea into drawing a tree shape
 A tree looks kind of like a capital Y
 But then, instead of straight lines, we can replace the two

branches of the Y with smaller Y's
 And so on …
▪ And so on …

 Base case (Trunk length < 5):
 Do nothing

 Recursive case (Trunk length ≥ 5):
 Move forward trunk length
 Turn right 30°
 Draw a tree (recursively) with a trunk length 15 units shorter
 Turn left 60° (which turns back to the original heading plus another 30°)
 Draw a tree (recursively) with a trunk length 15 units shorter
 Turn right 30° (which turns back to the original heading)
 Move backward the trunk length (returning to the starting point)

 Here is that function implemented in Python:

def tree(yertle, trunkLength):
if trunkLength >= 5: # hidden base case

yertle.forward(trunkLength)
yertle.right(30)
tree(yertle, trunkLength - 15)
yertle.left(60)
tree(yertle, trunkLength - 15)
yertle.right(30)
yertle.backward(trunkLength)

 Finish recursion
 Work time for Assignment 8
 Assignment 8 is hard!

 Work on Assignment 8

	COMP 1800
	Last time
	Questions?
	Assignment 8
	Recursion
	What is Recursion?
	Bottom Up
	Top Down
	Useful Recursion
	Solving Problems with Recursion
	Approach for Problems
	Walking to the Door
	Implementing Factorial
	Code for Factorial
	Recursion and loops are the same
	Adding up the numbers in a list
	Code for Sum
	Finding the biggest number in a list
	Code for biggest number in list
	Tips for recursion
	Drawing Recursively
	Complex shapes
	Drawing squares
	Nested squares
	Nested squares function
	Trees
	Recursion for tree drawing
	Tree function
	Upcoming
	Next time…
	Reminders

