
Week 11 - Wednesday



 What did we talk about last time?
 Exam 2
 Before that:
 Review

 Before that:
 Regular expressions







To understand recursion, you must first understand recursion.



 Defining something in terms of itself
 To be useful, the definition must be 

based on progressively simpler 
definitions of the thing being defined



 It's possible to define something recursively from the bottom 
up

 We start with a simple pattern and repeat the pattern, using a 
copy of the pattern for each part of the starting pattern



Explicitly:
 n! = (n)(n – 1)(n – 2) … (2)(1)
Recursively:
 n! = (n)(n – 1)!
 1! = 1

 6! = 6 ∙ 5!
 5! = 5 ∙ 4!

▪ 4! = 4 ∙ 3!
▪ 3! = 3 ∙ 2!
 2! = 2 ∙ 1!
 1! = 1

 6! = 6 ∙ 5 ∙ 4 ∙ 3 ∙ 2 ∙ 1 = 720



Two parts:
 Base case(s)
 Tells recursion when to stop
 For factorial, n = 1 or n = 0 are examples of base cases

 Recursive case(s)
 Allows recursion to progress
 "Leap of faith"
 For factorial, n > 1 is the recursive case





 Top down approach
 Don't try to solve the whole problem
 Deal with the next step in the problem
 Then make the "leap of faith"
 Assume that you can solve any smaller part of the problem



ProblemProblemProblemProblem

 Problem:  You want to walk to the door
 Base case (if you reach the door):
 You're done!

 Recursive case (if you aren’t there yet):
 Take a step toward the door

Problem



 Base case (n ≤ 1):
 1! = 0! = 1

 Recursive case (n > 1):
 n! = n(n – 1)! 



def factorial(n):
if n <= 1:

return 1
else:

return n*factorial(n – 1)

Base Case

Recursive
Case



 Any program that uses loops can be done with recursion
 Any program that uses recursion can be done with loops
 Sometimes it's easier to use loops
 Sometimes it's easier to use recursion
 A base case is necessary in recursion to tell the process when to 

stop
 This is like a condition for while loop or the amount of iteration for a for 

loop
 A recursive case is necessary so that recursion can continue
 This is similar to how a loop jumps back up to the top when it gets to the 

bottom



 Base case (Empty list):
 0

 Recursive case (At least one thing left in the list):
 The value of the first thing plus the sum of the rest of the list



def recursiveSum(list):
if len(list) == 0:

return 0
else:

return list[0] + recursiveSum(list[1:])

Base Case

Recursive
Case



 Base case (List with one thing in it):
 The first (and only) thing in the list

 Recursive case (More than one thing left in the list):
 The maximum of the first thing in the list and whatever is the biggest 

thing in the rest of the list 



def recursiveMax(list):
if len(list) == 1:

return list[0]
else:

return max(list[0], recursiveMax(list[1:]))

Base Case

Recursive
Case



 Use it only in special circumstances, since it's usually slower than 
loops

 Recursive solutions are often impressive for how short the code is
 Some people love it, but it can be hard to think about
 Instead of trying to solve the entire problem, we think about 

unwrapping one layer of the problem
 Don't think too much about what's going on in the other recursive calls 

since you can't access those variables
 You usually don't want to change the values of variables with =

since that can make the recursion harder to think about





 Many natural things have recursive shapes:
 Trees
 Spiral shells
 Blood vessels
 Mountains
 Snowflakes

 Using recursion, we can draw some complex, organic-looking 
shapes with only a little code



 Let's start with a simple (non-recursive) function that draws a 
square with a turtle called yertle and a side length called side

 It works by going clockwise around the square
 It (importantly) returns yertle to the starting point

def drawSquare(yertle, side):
for i in range(4):

yertle.forward(side)
yertle.right(90)



 We can use the drawSquare() function repeatedly to draw 
a series of nested squares with progressively smaller sides

 Base case (Side length < 1):
 Do nothing (Seems odd but is not an unusual base case)

 Base case (Side length ≥ 1):
 Draw a square with the given side length
 Continue drawing nested squares with a side length that's 5 units 

smaller



 Here is that function implemented in Python:

 This function is called like any normal function:

def nestedSquares(yertle, side):
if side >= 1: # hidden base case

drawSquare(yertle, side)
nestedSquares(yertle, side - 5)

nestedSquares(someTurtle, 200)



 Squares are fine, but they're not very exciting (or very organic 
looking)

 We can extend the idea into drawing a tree shape
 A tree looks kind of like a capital Y
 But then, instead of straight lines, we can replace the two 

branches of the Y with smaller Y's
 And so on …
▪ And so on …



 Base case (Trunk length < 5):
 Do nothing

 Recursive case (Trunk length ≥ 5):
 Move forward trunk length
 Turn right 30°
 Draw a tree (recursively) with a trunk length 15 units shorter
 Turn left 60° (which turns back to the original heading plus another 30°)
 Draw a tree (recursively) with a trunk length 15 units shorter
 Turn right 30° (which turns back to the original heading)
 Move backward the trunk length (returning to the starting point)



 Here is that function implemented in Python:

def tree(yertle, trunkLength):
if trunkLength >= 5: # hidden base case

yertle.forward(trunkLength)
yertle.right(30)
tree(yertle, trunkLength - 15)
yertle.left(60)
tree(yertle, trunkLength - 15)
yertle.right(30)
yertle.backward(trunkLength)





 Finish recursion
 Work time for Assignment 8
 Assignment 8 is hard!



 Work on Assignment 8
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